Proc Means

Tutorial: PROC MEANS no SAS

Como falei no post anterior sobre frequências (ver TUTORIAL: PROC FREQ NO SAS), é difícil entender bases grandes somente olhando para o analítico. Normalmente, vamos tentar obter algumas medidas que resumam o conteúdo em questão. Uma das formas de obter estas medidas, quando falamos de variáveis numéricas, é utilizando o proc means. Com o proc means você consegue encontrar a média, mediana, percentil, quartil  e várias outras estatísticas no SAS. Veja abaixo como utilizar este procedimento para entender seus dados. (mais…)

Anúncios

Proc Means

No SAS, uma das melhores formas de se obter estatísticas descritivas é através do proc means. Além de ser possível obter média, mediana e moda, você consegue diferentes faixas de percentil, observações missing e até mesmo gerar estatísticas cruzando variáveis.

Veja algumas maneiras de se utilizar o proc means com a nossa conhecida base german_credit_2:

1.  Primeiro, vamos obter algumas informações para a variável DurationOfCreditMonth utilizando o proc means da maneira mais simples possível:

proc means data= german_credit_21;
    var DurationOfCreditMonth;
run;

 2. Em alguns momentos você pode precisar gerar as informações segregadas por diferentes grupos. Por exemplo, você pode precisar da mediana da dívida dos clientes por cada estado, ou a média das notas dos alunos por matéria. Em nosso exemplo, vamos observar como a variável DurationOfCreditMonth se diferencia entre clientes com Creditability = 1 e Creditability = 0:

proc means data=tmp.german_credit_21;
    class Creditability;
    var DurationOfCreditMonth;
run;

3. Média, mediana e desvio padrão são medidas interessantes e auxiliam na interpretação dos números. No entanto, você pode estar interessado em entender mais a respeito da distribuição desses números. Uma forma de entender isso, é através de algum percentil:

proc means n mean std p10 p25 p50 p75 data=tmp.german_credit_21;
    class Creditability;
    var DurationOfCreditMonth;
run;

4. Agora que você já possui alguns números para entender melhor a variável, pode ser uma boa ideia deixar o seu resultado mais limpo limitando a duas casas decimais com o maxdec:

proc means n mean std skew p10 p25 p50 p75 data=tmp.german_credit_21 maxdec=2;
    class Creditability;
    var DurationOfCreditMonth;
run;

5. Não é tão interessante quanto os primeiros itens, mas salvar seus resultados em uma tabela – que aqui chamamos de tabela_saida – pode ser útil, principalmente em processos mais automáticos:

proc means data=tmp.german_credit_21;
    class Creditability;
    var DurationOfCreditMonth;
    output out=tabela_saida sum=soma mean=media p50=mediana;
run;

6. Outra coisa que podemos fazer, semelhante ao que fizemos no item 2, é gerar essas medidas para mais variáveis dividindo todas pelo Creditability ou então, gerar as medidas da variável por outras classes:

proc means data=tmp.german_credit_21;
    class Creditability;
    var DurationOfCreditMonth Purpose;
    output out=tabela_saida sum=soma mean=media p50=mediana;
run;
proc means data=tmp.german_credit_21;
    class Creditability Purpose;
    var DurationOfCreditMonth;
    output out=tabela_saida sum=soma mean=media p50=mediana;
run;

BÔNUS:

Para incluir os dados missing e ainda contar o número de observações missing, acrescente missing e nmiss no proc means:

proc means  data= <nome da base> missing nmiss;
    class <classe - nao obrigatorio>;
    var <variavel>;
run;